Anonymizing Health Data
Case Studies and Methods to Get You Started
With this practical book, you will learn proven methods for anonymizing health data to help your organization share meaningful datasets, without exposing patient identity. Leading experts Khaled El Emam and Luk Arbuckle walk you through a risk-based methodology, using case studies from their efforts to de-identify hundreds of datasets. Clinical data is valuable for research and other types of analytics, but making it anonymous without compromising data quality is tricky. This book demonstrates techniques for handling different data types, based on the authors' experiences with a maternal-child registry, inpatient discharge abstracts, health insurance claims, electronic medical record databases, and the World Trade Center disaster registry, among others.
Details | |
---|---|
Herausgeber | O'Reilly Media |
Autor(en) | Khaled El Emam, Luk Arbuckle |
ISBN | 978-1-4493-6307-9 |
veröffentlicht | 2013 |
Seiten | 212 |
Sprache | English |